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Abstract-The distortions within beams and rods undergoing large displacements and rotations are here
derived from three-dimensional elasticity by an asymptotic procedure. This procedure, based on the
premise that strains vary more gradually along the rod than in transverse directions, takes full account of
the shape of the cross section, the traction conditions on the lateral boundary and of any material
anisotropy. The manner in which it generates a hierarchy of sets of rod equations is outlined. In the
fundamental set, the distortions over each cross section are the anti-clastic curvature and warping
associated with the St.-Venant semi-inverse solutions for bending and torsion, suitably corrected to allow
for large rotations. The corresponding equations governing the rod configuration are Kirchhoff's equations,
with bending and torsional rigidities computed from the St.-Venant distortions. The procedure gives some
three-dimensional substance to elastica theory, relating the constitutive assumptions to three-dimensional
elasticity. It gives also a logical procedure for obtaining higher order corrections to the theory, and shows
how St-Venan!'s hypothesis concerning details of end loading arises naturally.

I. INTRODUCTION

In an attempt to derive useful information concerning elastic deformations involving large
displacements, numerous authors have turned their attention to deformations of rod and beams.
These are considered both for their practical importance, and because well established
approximate theories are available [1-3], based on linear elasticity but presumed to apply to
large displacements.

Many approaches exist. Besides the essentially approximate methods such as elementary
beam theory, in which plausible relationships between curvatures and resultant moments are
postulated, there are methods involving expansion in powers of the lateral coordinates[4].
These series must be truncated-a procedure whose physical, as opposed to mathematical,
implications are not always apparent. For this reason, asymptotic descriptions [5] of rods are to
be preferred even if in some cases they generate identical equations.

The aim of any theory of rods or beams is to characterize the deformed configuration of a
slender three-dimensional body by a single curve (the curve of centres) and certain parameters
recording material orientation relative to that curve. The three-dimensional elastic constitutive
law is replaced by expressions for resultant forces, moments and generalized moments in terms
of extension, curvatures, torsion and the remaining parameters. Each resulting theory must
necessarily be approximate, although its accuracy should increase as the representative scale of
distance along the axis of the rod increases relative to a typical diameter of the cross section.
The present approach takes this requirement as paramount, and postulates that the distribution
of deformation gradient over each cross section varies only gradually with axial distance. The
variation over each cross section is not specified in advance, but is found by the solution of a
sequence of two-dimensional problems which can fully take into account any material aniso
tropy and inhomogeneity, as well as the traction condition over the lateral boundary. The
resulting theory describes deformations of rods and beams suffering small curvature and
torsion, but finite displacements and rotations.

In the basic approximation, the equations describing the curve of centres are formally
equivalent to Kirchhoff's equations [1] for an initially straight rod, with resultant moments
linearly related to the curvatures and the torsion. Moreover, it is shown as a logical step in the
iteration procedure that for a wide class of materials, including isotropic materials, the bending
and torsional rigidities required by elastica theory are those appropriate to the St.-Venant
semi-inverse solutions for pure bending and pure torsion. Although this has been widely held to
be the case, the author is aware of no consistent generation of the result. Thus, this basic
approximation gives some three-dimensional substance to elastica theory, and shows how the
distortion of any cross section from the plane normal to the curve of centres is described to
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first approximation by St.-Venant's solutions. This generalizes Ericksen's recent result[6]
concerning thin rods in helical configurations. In such configurations, the curvatures and the
torsion are constant along the curve of centres, and Ericksen shows that small strain theory has
exact solutions in which the distortions are given by St.-Venant's solutions suitably corrected to
account for finite rotations. More generally, when the curvatures and the torsion vary gradually
along the rod the distortion is given approximately by the corresponding St.-Venant solutions.
This idea is partly incorporated in a recent paper [7] by Hegemier and Nair.

Continuation of the iteration procedure will yield theories of successively higher orders, and
moreover will generate a procedure for relating the coefficients in such "director theories" to
three-dimensional elasticity. It also highlights the fact that a rod theory is only an "outer"
approximation in some asymptotic scheme-and that the boundary layer solutions required at
the ends of a rod are solutions consistent with St.-Venant's hypothesis.

2. REPRESENTATION OF THE CONFIGURATIONS

We consider elastic deformations of a rod, beam or tube defined by the region X E
D x (0, L) of material coordinates XI> Xz, Xl' In the unstressed reference configuration X
coincides with cartesian coordinates, and D denotes a connected region of the XI> Xz plane.
Without loss of generality we scale coordinates so that a typical diameter of D has unit length.
Then L is large since the rod is slender. A deformation is described by X~ x(X), where x is the
vector of current cartesian coordinates. The deformation gradient p :::: axlax has componentst
Pit:::: axlaxp whilst the Cauchy-Green strain tensor is G:::: pTp. The stored energy density may
be written as EW(p, X), where W(Bp, X):::: W(p, X) for all proper orthogonal matrices H, and
the explicit dependence on X allows for material inhomogeneity. Alternatively the energy
density may be written as EW(G, X). In either choice E is a characteristic elastic modulus
having the dimensions of stress, so that the Piola-Kirchhoff (engineering) stress is

ET=E
aw

(1)ap

where the components 1jJ:::: aW/iJpit of T are non-dimensional.
The equilibrium equations are

§+Po,·::::o l'n D (0 L)a~ Eli x , , (2)

where Po is the density in the reference state and f is the body force per unit mass. The lateral
boundary conditions are

(3)

with I the traction per unit undeformed area and N the unit outward normal to aD, whilst the
boundary conditions over the ends Xl = 0, L are for the present left unspecified.

When W is independent of Xl and f, I both vanish, eqns (2), (3) possess solutions with
aGlaXl =0, so that G =G(X..). These are helical solutions in which each cross section
Xl =constant has a similar distorted shape related to two parameters specifying the helix into
which the reference fibre Xl:::: 0 is deformed.; For suitably small E-1pJ and E-1g we anticipate
that deformations are small perturbations from, and gradual modulations to, such helical
deformations. An appropriate analytical procedure win be presented in a subsequent paper.
However, in many practical situations, although the orientation may vary appreciably along the
length of a rod, the curvature and torsion are small quantities. Consequently each distorted
cross section approximates to one in which not only G, but also the deformation gradient p, is
independent of Xl. Thus, we look for deformations in which p varies with Xl only through
dependence on the "long scale" variable Y =V{l, for some sman parameter E. To represent

tTbrolJlbout this paper Latin indices I'llDp over the values I, 2, 3, whilst Greek indices range over the values I, 2.
Summation convention over repeat;ed indices is used.

tSee Ericksen(6]. Such helical solutions exist. also for some distributions of body force and surface traction which,
relative to eaCh cross section, are independent of Xl. .
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such deformations we may write

x = r(X3) +H(Y)u(X.., Y), HTH = I, Y = EX3,
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(4)

with u(O, Y) =O. The curve x =r(X3) then represents the deformed shape of the reference fibre
X.. = 0. If it has unit tangent e = e( Y) and stretch a = a( Y) = Idr/dX3/ which vary only on the
scale of Y, we have

r'(X3)=a(Y)e(Y)=H(Y)m(Y) where m=(O,O,a)T

when e is taken to be the third column h.3 of H. This, together with el =h.1 and e2 =h.2 forms
a right-handed triad of unit vectors which rotates with Y so that

dH A
dX

3
=EH'(Y) =eH(Y)u(Y), (5)

for some skew-symmetric matrix !\. We then identify u/(X.., Y) as cartesian coordinates of
points of a distorted cross section relative to the triad e.. f2, e at corresponding Y (see Fig. 1).
Consequently the deformation gradient p has componentst

from which the rotation H may be factored out as

p=Hq, q/cr = U~a , (6)

In deformations (4H6), the orthogonal matrix H varies only on the scale of Y = EX3, so that
the curvatures and torsion are small. Moreover they vary only gradually. Thus the parameter E
typifies a curvature or torsion of the rod, and e- I is a length over which orientation varies
significantly. A suitable numerical value for E will depend on many features of the loading of
the rod. However, it is clear from (2) and (3) that deformations can have the form (6) only when the
resultant of the loadings E-lPof and E- I

, over any cross section are at most O(E). In
deformations largely determined by body forces and lateral surface tractions (e.g. beam
bending) this means that E may be chosen as a typical value of (resultant 10ad)1E. For
deformations determined essentially by end loadings (e.g. a strut under compression), E is more
simply chosen as a typical curvature, torsion or strain.

With little loss of generality we set

E- IPol = Ef(X.., Y),

Fig. I. The orthogonal triad e.. ez. e at typical cross sections X3• showing the coordinates "/ of position
relative to the point on the curve of centres.

tA comma preceding a subscript denotes partial differentiation with respect to the variable indicated.
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so excluding only those situations in which pointwise external loads greatly exceed the average
loads on any cross section. Then (2) and (3) become

§-' .ax. - - E!;(X.., Y) 18 D x (0, L),
J

Since W(p, X) = W(q, X), the stress T may be written as T = H1', where

aw aw aw
ap=T=H1'=Haq so that 1'=aq'

(7)

(8)

(9)

Thus l' = 1'(X.., Y) for homogeneous materials. Also we may allow inhomogeneous materials
provided that any explicit dependence of W(p, X) on X3 may be written as dependence on the
long scale variable Y = EX3• In terms of l' eqns (7) and (8) become

in Dx (0, L)aTiol (A. aTj3) •
ax.. +E U;1''1'J3 +aY = - EHJJ

TiaN.. = EHJJ over aD x (0, L).

(0)

(1)

It is clear that the limiting forms E -+ 0 of (6), (9Hll) describe "cylindrical" deformations
q:::: q(X..) (plane strain, plus axial extension and shear) compatible with zero body force and
vanishing tractions over the lateral boundary. We shall use these to give approximations to the
distortion u(X.., Y) of each cross section.

3. THE PERTURBATION ANALYSIS

Let q = q*, u = u* be solutions of the limiting form E -+ 0 of eqns (6), (9Hll), namely

* * * aw
qia = Ui... , qj3 = a(Y)8j3, 1'*=- W = W(q*, X.., Y)

aq*'

* * aD x (0, L).Tia... = 0 18 Dx (O,L), TiaN.. = 0 over (12)

Since (12) contains no derivatives with respect to Y, any Y dependence may be treated as
dependence on a parameter. Also, since

X.3 =H( Y)m( Y) =a( Y)e( Y)

each solution corresponding to fixed Y describes a deformation by which the cylinder having
cross section D deforms into another cylinder having axis parallel to e, when subjected to axial
stretch a. Details of u*, q* and 1'* depend on material anisotropy and inhomogeneity, but it is
shown in Section 4 that u*(X.. ; Y, a) is the solution of a variational problem over the
two-dimensional region D, and that the resultant load over each cross section is axial and may
be written as

Solutions to (6), (9Hll) may be sought in the form

u = u*(X.. ; Y) +EU(X.. ; Y),

l' =1'*(X.. ; Y) + Ei(X.. ; Y),

q = q*(X.. ; Y) +Eq(X.. ; Y)

a =aCYl, 0 =s'i(Y),

(13)
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so that the distortion of each cross section is closely approximated by a solution u* of (12) for
appropriate Y, appropriate stretch a and rotation H.

By inserting (13) into (10) and (11) and using (12) we find that

,1 A * * A

Tla,a = - (HjU / +UlfT /3 +T13. y) - E(OlrT/3 + T13. y)

in D x (0, L), with boundary conditions

over aD x (0, L). Also, following Toupin and Bernstein[8], l' may be expanded as

so giving

where

Alternatively " may be expressed in the form

(14)

where .N'IJ is the nonlinear function of D, u* and their partial derivatives having the value

Then, from (6) we have

which may be used with (14) to give

a A a{ A * *} AA* *
aXa (c~ut,lJ) =- aXa CIak3(UtmUm+Uk,Y) - (HJJ+UIj1'J3 +TI3.y)

- E[fllrTJ3 +TI3.y +a~a {.N'1a +clak3(fltmum+Ut,y)}]

i!! - }j(Xa ; Y) in D x (0, L),

with boundary conditions

c~uuNa =- Ciak3(l'ltmU: + uty)Na + HJ/

-E{.N'1a + Ciak3(l'ltmUm + ut,y)}Na

i!! ZI(Xa ; Y) over aD x (0, L).

(15)

(16)

To analyse the structure of eqns (15) and (16) we make the following observations. Suppose,
for the moment, that Y and Z are known. Then, like (12), these equations involve no derivatives
with respect to Y, and so Y may be treated as a parameter. Moreover, (15) and (16) are the
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linear elastic equations for small displacements u· -+ u· +EO superposed on the (possibly
inhomogeneous) cylindrical deformation q"'(Xa , Y), and caused by "fictitious" body forces EY
and surface tractions EZ which, like Ii, are independent of the axial coordinate X3• Hence
functions u(Xa , Y) may be visualized as displacements in a cylinder in which all cross sections
are distorted into congruent surfaces. The deformations are the combinations of plane strain
and warping which would result from force distributions EY and EZ, and consequently exist
only when these fictitious forces are in static equilibrium. Specifically, the resultant load over
each cross section and the moment about any axis parallel to e must both vanish, so giving

f fD YdA +iD Z ds = 0,

f JD (ufY2- uiY\)dA +tD (UfZ2- uiZ\)ds = O.

(17)

(18)

These give four equations connecting a( Y) and the three independent elements of {}( Y) which
otherwise would appear to be arbitrary in (15) and (16). Their detailed form follows from
substitution for Y and Z from (15) and (16), and is

HI1 (flo II dA + tD KI dS) + fl/j J 10 (T;3 + ET/3)dA +d~ J JD (T~3+ ET'3) dA = 0

e3k1{f10 ulHJJ dA +tD ul HI,g1 dS} = e3/' flo q~Clak3(flkmu:'+uh) dA

- flo e3k1 {ul(fl'JT~ + T~3.Y + Efl,t/3 + ETI3.Y)

- Eq t,.[.N"a +c'a/3(fl/mUm+Ul.Y)]} dA, (19)

where e,lt is the alternator.
The first c=quation is no more than the equilibrium equation connecting the external load

EHL and the resultant stresses HF, since it may be rewritten as

(20)

where

Pi· f JD Til dA = e,P"'(a) +E f 10 T'3 dA,

EL,.EHjI. f !olIdA+EHII tD KldS.

Following Love[l) we call F the stress-resultant and L the force-resultant, the components
being resolved along ett e2 and e. Likewise, if we use K", and EM'" to denote the stress-couple
and the externally applied couple-resultant each calculated in the approximation u=u"', and
defined by

K~.e/J/c JJD u;TudA

EM~. t/J/c{Ef!o u;H,J, dA+ EtD u;HurKl dS},

we find that the left-hand side of (19) is a determinant which may be identified as M:(Y). Thus,
(19) expresses the equilibrium between M: and certain moments associated with the bending
and torsion of the rod.
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Equations (19) and (20) are compatibility conditio~s arising from the system (15) and (16) for
u. They are exact equations applying to the functions 6, u* in (13), and together with
H'(Y) ={i(Y)H( Y) govern variations in the orientation B and stretch a of the rod, so that the
configuration

(21)

may be found. In practice we solve (19) and (20) only approximately, by inserting approximate
expressions for ii obtained from (15) and (16) either iteratively or by power series expansion in
E.

4. THE REFERENCE DEFORMATIONS q.

The non-linearly elastic solutions u* to (12) are simply classified (see Ericksen[9]). In each
deformation satisfying (12) we may write

and then notice that the governing eqns (12) are the Euler-Lagrange equations and the natural
boundary conditions which must be satisfied if the "cross-sectional energy"

(22)

is to be stationary subject to specified Y and axial stretch a. Thus, solutions u* are functions
which make E take a stationary value E*(Y, a), and we anticipate that those functions which
minimize E describe the preferred distorted shapes of the cross sections.

The corresponding stress-resultant is parallel to e for all material behaviours W(q*, X.., Y).
To show this we use

which follows from the symmetry of the Cauchy stress tensor (det pf1TpT. By integrating over
any unit length D x (X, X + 1) of the rod, and using both the divergence theorem and (12), we
obtain

which gives

Consequently the stress-resultant has the form F* = eP*(a), and moreover is related to E* (see
[6], [9]) by

P*(a) =fin T;'3 dA = aE*/aa. (23)

Referring to (20) we see that P*(a) is 0(1) if L is 0(1), and that in this case the rod deforms
essentially as a string subjected to loading EL( Y). For example, if; is purely gravitational and i
vanishes, the rod hangs as an extensible catenary, with the O(E) terril in F, introducing effects
of small stiffness such as those computed in [10]. Consequently p* and a -1 need be treated as
DO) only when the rod behaves essentially as a string with small stiffness. The mare interesting
static problems of rods and beams arise when L, p* and a-I are small, so that the
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stress-couple at any cross section is no less important than the stress-resultant. For this reason
we confine attention in the paper to rod deformations and choose E so that l' = O(E) and
q - I = O(E). Thus, by taking q* = I we characterize rod deformations as those having dis
tortions which are small deviations from the rigid body displacements which align the coor
dinate axes along eh e2 and e.

The choice q* = I, 1'* =0 reduces eqn (19) to

Since we expect bending and torsion to be possible without such a large couple-resultant, this
implies a preferred choice of axis Xa = O. For simplicity we restrict attention to materials which
are homogeneous over each cross section so that aCii/cJaXa = O. Then the 0(1) terms disappear
from M: if, as is conventional, the reference line Xa = 0 is taken as the axis of centroids of the
cross sections D. Also, since Land M: are O(E) we lose little generality by taking i and gas
O(E) in the following analysis.

5. ANALYSIS OF THE DISTORTIONS OF THE CROSS SECTIONS

When we take reference deformations with u~ =8it0fJ and q:3 =1, we must allow some
axial extension in Eq. Consequently, we set a = 1+Ea(Y) in (6) and (21) and incorporate a
contribution a8i3 into tli3 in (15) and (16) and all succeeding equations, so that (6) gives

(24)

Thus, eqns (15) in D become

a a.· .
aX

a
(CiaIc(jUlc.fJ) = - aX

a
{cia/C3(a8/C3 +n~fJ)} - Hili

- E[niif i3 + f i3•y +a~a {.Kia + Cialc3(n/cmUm+u/c.Y)}J. (15')

The boundary conditions over aD are obtained similarly from (16) and are

These are to be solved for uand T, which are then used in evaluating the stress-resultants

which occur in (20). Since this reduces to

we may introduce the components of 0 by

0=( ~
-{3

and obtain

-y
o
a

(25)
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(26)

which, apart from a change of notation, are the equilibrium equations used by Kirchhoff (see
[1], p. 387).

In (25) and (26), Eala and EfJla are the conventional curvatures K and K' whilst E-yla is the
torsion of the rod (a::= 1). Together these measure the rate at which e.. e2 and e rotate as Y
increases.

The aim of this paper is to justify the usual assumptions concerning Fby considering (15')
and (16'). Specifically we show that unless the rod behaves essentially as a string or bar in
tension or a bar in compression, with F::= F3e ::= dAe, then Fis not functionally related to 11 and
a. It is the first approximation EK to the stress-couple K* which is related to 11 in the basic
approximate constitutive law.

The eqns (15') and (16') for umay be split into three parts, each of which corresponds to a
self-consistent problem of the type (15) and (16). We write

u=ii+Eii+ev, (27)

where the dominant contribution ii to Ii is a solution of

a.g~ (Cia/cIJuk,J3) = - a~" {ciak3(de5k3 +Ot,&Xp)} in D

cia/cIJuk,J3N" = - Ciak3(de5k3 +Ot,&Xp)N" over aD.
(28)

In (28), the right hand sides represent a distribution of fictitious force which is self
equilibriating because X" = 0 is chosen as the line of centroids.

Alternatively, since q/cIJ = UIc.P, qk3 = de5k3 +Ot,&Xp is the limiting form of (24) as E-+ 0, the
distortions ii corresponding to each choice 11 and d are those predicted for helical configura
tions by small strain theory (Ericksen[6]). They are discussed further in Section 6.

The contributions dl at any Y are those induced directly by the external loadings i and i,
which themselves are O(E). These loadings are not usually self-equilibriating-but have
resultant HL and axial moment MJe. Consequently, if A is the area of D and

is the second moment of area about the axis X" = 0 we can obtain a compatible system of
equations by writing

a~" (ciakpillc.p) = - E-I{Hjl- A-ILil+ E-Ie3jjX#JC-1 10 D

cia/cIJillc,pN" = E-I~gj over aD.
(29)

The choice A -IL j+e3j~MJC-I is just one of many possible fictitious force distributions
having the required resultant and moment, but any other sensible choice will cause only O(E)
differences in d. The functions li describe cylindrical distortions which account for the details
of the loading distributions. Moreover, they vanish (I = 0) when the body forces are uniform
(like gravitational forces) with i = A -IHL, MJ = 0 and g= O.

Since (26) shows that

L j = - E(O/'j + Fi.y) = - EA(Ojj(Tj3) + (Tj3.y»,

where (f) denotes the mean value over D of any quantity f, the third contribution ev IS
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a~a (Ciak6Vk,/l) = - e3/;XjE-tMJC- 1
- fl liC'rj3 - (f/3» - (fi3•y - (fi3,Y»

- a~a {Kia +CIak3(fl""um +Uk. y)} in D

Clak6Vk.~a = {Kia +Ciak3(fl""um +Uk, y )}Na over aD.

(30)

Since (28) and (29), like (IS') and (16'), are self-consistent systems, so also is (30). Unlike (28)
and (29), which are linear in ii and Gand correspond to deformation gradients and stresses

qia = UI.a, ql3 = d813 +fll,x/l; Til = c/jlclq/d

4ia = i1i,a, 413 = 0; Til = cl//d4/d = clika4ka ,

(31)

the system (30) is non-linear in v. Moreover it involves the function ii and G, since (14) and (25)
imply that

Til = cljlclq/d +KIi(u), 4ia = Vi,a, 4/3 = 0, U= ii +E(G +v). (32)

However, venters the right hand side of (30) only through terms which are D(E), so that it
appears feasible to construct solutions either by iteration or be expansion in powers of E. The
form of the distortions u then becomes clear. Since ii is linear in Ii and the three independent
elements of ta, the first approximation to v involves derivatives of these with respect to Y.
Each successive iteration introduces a higher derivative, but also a corresponding extra factor
of E. Consequently, when T= i +E(f +i) is substituted into each Ain (26), and also into (19) to
give a further scalar equation, the right hand sides involve successively higher derivatives of ta
and a multiplied by correspondingly increasing powers of E.

The iterat~on will not terminate naturally. In elasticity the stress-resultant EF at one cross
section will be affected (perhaps minutely) by ta and d at any other value of Y. However, as
E~ 0 the dependence becomes ever more localized in Y. The first approximation u== ii of our
procedure may then be regarded as the first term in an "outer" expansion for the distortion of
cross sections. Subsequent iterates produce terms which give higher order corrections. Cor
respondingly the rod configuration is obtained as an outer expansion arising from substitution
into (26) and (19). The lowest order terms are found to be Kirchhoff's rod equations. Obviously
such expansions do not apply near the "ends" of the rod, where "boundary layers" or
"transition regions" must occur. These are described by deformations which exhibit St.·
Venant's hypothesis, and may be analysed using Toupin's approach[ll] (see Section 8).

6. THE DISTORTIONS ii

To solve (28) for the dominant distortions ii we first consider isotropic materials, for which
standard results are readily available. Then the linear elastic constitutive law (31) for Tij

becomes

where A, IL are the Lame constants non-dimensionalized with respect to E and i = iT is
indistinguishable from a Cauchy stress. Substituting for ta and q from (25) and (31) we see that
(28) reduces to
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with appropriate boundary conditions.
Solutions are unique when the conditions ii = 0, ilt.2 = il2.1 are imposed at X.. = 0 to eliminate

arbitrary translations and a rigid rotation about the cylindrical axis. We note that il3 does not
occur in the first two equations, and has the form il3 = rt/J(X.. ) where the harmonic function t/J
is the standard warping function for the cross section D.

To analyse the distortions fully we find it advantageous to introduce the Prandtl stress
functions 9/(X.., Y) for which

(33)

where e..fJ is the alternator. Without loss of generality, the boundary conditions may be taken as

9=0 on aD.

For isotropic materials the definitions of T3.. then give

(34)

from which il3 may be eliminated to give

83 = 0 on aD. (35)

Hence 93 = Wy'l'(X.. ), where 'I' is the classical torsion function for D. The corresponding
warping is il3 = rt/J(Xa ) where t/J is the harmonic conjugate of 'I' +kxt

2+Xl).
The remaining equations are

Ail..... +2p,ill,l +A(- fjXI +aX2+d) =91,2

p,(il l ,2 + il2.1) = - 91•1 = 82•2

Ail,.,,. +2p,il2,2+ A(-fjXI +aX2 + d) = - 92•1,

When the Airy stress function X(X,.) is introduced so that 81 =X.2, 92 =- X.I and the il...fJ are
eliminated, we obtain V2

4X= 0 in D with X= 0, ax/an = 0 on aD. Consequently, 9,. = 0
throughout D so that

(36)

and the distortions satisfying il,. = 0, ill ,2 = il2.1 on X,. = 0 are

ill = O'{- aXI X2+~ fj(X1
2

- Xl) - dXI}

il2 = O'Ha(XI
2

- Xl) +fjXIX 2 - dX2}

where O'!Ii !A(A +p,r l is Poisson's ratio. Thus we find that the distortions ii at any cross section
are the linear combinations

(37)

of the displacements c, f/J, ,,(,.) obtained from St.-Venant's semi-inverse solutions for extensIon,
torsion and bending. The extension Ed, twist E'Y and curvatures Ea, Efj associated with bending
about the XI and X 2 axes may vary with Y. They are constants in the special case of helical
configurations discussed by Ericksen[6].
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The preceding analysis is readily modified to apply to any anisotropic material for which
planes X3 = constant are planes of structural symmetry. For these materials the value of W is
unchanged when q",3 is replaced by - q",3, and all elastic moduli Cijkl which contain the index 3
an odd number of times are zero. Also, since Tij = Cijklqld is a linear elastic constitutive law, Tis
symmetric so that Cjjld = Cjild = Cldjj. Although such solutions may be found in Love[l] (p. 345) and
Ericksen [6], the present author believes that use of the stress functions (Jj better reveals their
structure.

In uniaxial tension with extension q33 = ii, the stresses are

when E is chosen as the Young's modulus for uniaxial stress. The general corresponding
deformation gradients are

q",3 = q3", = 0, q33 = ii

where K"" = KfJa. The arbitrary parameter 8 allows for rotations about the X3 axis, whilst the
symmetric matrix K describes the Poisson contractions. We notice that in isotropic materials
for which K",{J = - u8",{J, the solutions (36) have the form q"" = - Uq338",{J + e<rtJP(X",). Thus, each
fibre X", =constant undergoes Poisson contraction appropriate to T",{J =0, but undergoes a
rotation p sufficient to satisfy the compatibility conditions q"'{J."Y = q","y.{J'

We seek similar solutions (J", == 0 to (28) in the present case, with ql3 =- 'YX2, q23 = 'YXt.
q33 = d - {3X1+aX2 as before, and so propose that

(38)

It is then easily verified by substitution into (31) that T",{J = 0, so that the assumed form (38) is
compatible with (J", = 0 for all choices of p(Xt. X 2).

Using q33.1 = - {3 and q33.2 = a, we find that the remaining compatibility conditions are
satisfied wher.

p = (aK II +{3KdX1+(aK21 +{3KnlX2,

il. = a(KI\X\X2 +K \2X22) - ~ {3(K\\X\2 - K 22xl) +dK \aX""

il2= -~ a(KII X. 2- KnXl)- {3(K.2X\2+ Kn X\X2)+ dK2..K",. (39)

The distortions (39) describe anticlastic curvature and Poisson contraction, and are independent
of the torsion parameter 'Y. Thus the torsion solution is a pure warping with il", = 0, il3 oc 'Y.

The stresses T3'" = 1'",3 reduce to the forms

where L",{J = LfJa = C3",3{J are the shear moduli used by Ericksen[6]. Since 1'3", = e",,(J3.{J, the
stress function (J3 is determined from

in D, with (J3 =0 on aD. When we write (J3 = 'Y'/J(X",) and eliminate il3we find that I/J(X",) satisfies

1/1=0 on aD
(40)

where !1 == LIILn - L\2L21' The corresponding warping function «J(X",), for which il3= 'Y«J, is
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After suitable rotation of axes and rescaling of coordinates, the eqn (40) may be put into
canonical form !/I.xx + !/I.IT = -2. Consequently, the stresses fa) and warping t!J(Xa ) are simply
related to those of an isotropic rod having cross section which is an affine stretching of D.

For materials having more general anisotropy the equations for th, 92 and 9) will not
generally allow solutions 8a == O. However, distortions will still have the form (37) with the
bending and torsion functions w(a), t/I determined as solutions of the three coupled second-order
equations (28) for ii. These equations have constant right hand sides, since iin is linear in XI
and X2, but displacements iia will not generally be quadratic in XI and X2• To O(E), the
stress-resultant EF and stress-couple d{ will be linear in d and the components of O.

7. DERIVATION OF THE ROD EQUATIONS

For the materials considered in Section 6, with distortions given by (39) and (40), the stress
resultant is F =EF, where

Fa ==Itfa3 dA ='Y IIv eaJJ4J,p dA =0

F3 !11i lID i)) dA = It(C33..,q~+ C3333ii3) dA

=IIv (C33aJ1'a/J + C3333)ii)) dA =It(d - f:JX1+aX2) dA

=Ad.

(Recall that stresses have been non-dimensionalized with respect to the Young's modulus E.)
Reference to (26) then shows that if L:f O(E) the rod behaves like a string or bar undergoing
small extension. In such cases the configuration is determined essentially by

d A _I
dy(Flt)+E L=O, ee= I, ~= -1e(Y)dY E ,

which follow from the approximations Fa < F), a=1. To this approximation F) arises as a
reaction to the constraint e.e =I, and causes an extension Ed =A- I EF3• These equations are the
basis of theories for an extensible string and for bars and columns under compression.

More general deformations of rods correspond to L =O(E2
) and Ed =O(E2

), so that all
components of F are O(E2

) even though .,. = O(E). This might suggest that, to determine rod
deformations, we need find f and at least one iterate for f in order to evaluate non-vanishing
approximations to Ffor substitution into (26). However, standard considerations of equilibrium
and standard treatments of beam bending indicate that such calculations may be avoided, and
that the stress-resultant EF is related to the exact expressions

M; =EM == ejjk{EIt up~ dA +E £v ulllkil dS}

Kj = EXj == ejjkIIv EUrrk3 dA (41)

for the couple-resultant M and the stress-couple K. We shall now show how approximations to
this relationship are generated naturally, and how, in the first approximation, EF is not
determined by any constitutive law but is connected to the approximations EM*, EK obtained
from (41) on the basis of u == u*, ;k3 = Ti3.

We exploit the symmetry of TqT which is embodied in (1), (14) and (27), and is not an extra
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restriction. Substituting from (27) we recover Tij = TJj and obtain the additional symmetry
condition

EPa !!5ffD ETa 3 dA = E
2ffD (Ta3+Ta 3) dA

= E
2fin {T3a + T3a +T3Iila/- Ta/il31 +O(E)} dA.

Using (29) and (31) we may evaluate the first term as

E
2 fin T3a dA = E2tD XaT3~fldS-E

2 fin Xa ~~: dA

= E tD XaH j3Kj ds +E fin Xa(Hj3h- A-
I
L 3) dA = EeflaM~.

Performing similar manipulations on the second term of (42) we obtain

E
2ffD T3a dA = E

2ffD Xa {03j(Tj3 - (Tj3» +T33,y - (T33,Y)} dA

= E203fl fin XaTfl3 dA + E
2d~ fin XaT33 dA + O(E

3
)

_ 1 2A - 2 dKp 3- 2E U3~atJ(3+E efla d Y +O(E ),

because Tfl3 = T3fl = eflih,'Y and

we may show that

Also, since Ta{l = 0, the third and fourth terms in (42) reduce to

Inserting the above results into (42) we obtain

(42)

(43)
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In expressions (43) for the shear resultants, the approximate stress-couples are related to 0
by the formulae

(44)

(45)

and so are calculated on the basis of the St.-Venant semi-inverse solutions. They involve the
usual torsional and bending rigidities and the familiar moments and products of inertia Ip.., of
the cross section D. The only influence of anisotropy occurs in the coefficients of (40), and
hence in the torsional rigidity.

Similar manipulations may be applied to eqn (19) giving

EM1 = E2eaPf fD {KPa - Xa(Oprfj3 + fp3.Y)} dA

= - E2eafjffD {OP~af/3 +Xafp3,y +O(E)} dA

2 A - 2 dK3 3
= E Op3Kp- E dY +O(E),

where we have used the symmetry of CUkI. and the result that

eafj f fD KPa dA = -eap ft {faJ4PI +O(E)}dA

=- eap ft {fa30pyX.., +O(E)} dA =O(E).

Equations (43) and (45) may be combined into the single equation

2 dK; 2A ..il * A 0 3)E dY +E U;I'Toj +EM; +Eeai3ra = (E.

We now revert to physical variables (on the scale of X;) defined by

(46)

(47)

F;+ == EF; =EEF;, Kt == EEK; =EEK; =EK;

Lt == EEL;, Mt == EEM~ =EEM; = EM;

and similarly rescale the curvatures and the torsion by introducing the components a + =Ea,
p+ =EP, y+ =Ey of the skew symmetric matrix n == EO. Then, by approximating (46) we
obtain, using (5), (25), (26) and (44), the complete set of equations

dF;+ 0 1::'+ L+ 0dX
3
+ ;Irl + i =

dKt OK+ 11+ 1::'+ 0dX
3
+ ;1 1 +lIf.l; +ea ;3r a = (48)

(50)
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which, apart from a change of notation, are the equations to be found on p. 388 of Love [1].
They are the equations for the equilibrium of an elastica and are simplified when the Xl and X 2

axes are chosen as principal inertial axes of D, so that 112 = 121 = O. Methods for their solution in
many situations may be found in [I] and [3].

The elastica equations are now seen to be logical approximations to three dimensional
elasticity for slender rods, provided that the strains are small enough for a linear elastic
constitutive law to hold and that external forces are neither so large nor so rapidly varying that
the curvatures and the torsion vary significantly over lengths comparable with the thickness of
the rod. For any material having the symmetry discussed in Section 6, the bending rigidities are
correctly approximated by the assumptions that normal cross sections remain normal to the
curve of centres and are undistorted, whilst the torsional rigidity is correctly given in (50) by
solving a standard torsion problem for l/J. The couple resultant M+ is also correctly ap
proximated by neglecting distortions (but not rigid rotations) of each cross section. When the
elastica equations are solved for 0, K+, rand H (which must be gradually varying functions of
X3), the extension is found from Ed = EF3/ A == F3+/ EA. Generally this is small, so that the
standard assumption that the elastica is inextensible is justified, and (21) may be replaced by

The actual distortions of each cross section are those of type (37) corresponding to the local
values of the curvatures and the torsion-the extension effects usually being negligible.
Examples showing how standard small displacement solutions may be readily generalized to
situations involving large displacements and rotations will be found in [12].

8. THE END

The results in Section 7 justify the use of the elastica equations (and their various
approximations for beam bending, column buckling, etc.) for any cross-sectional shape and a
wide range of elastic materials and loading conditions. The fact that details of the end loading
cannot be taken into account is usually explained by an appeal to St.-Venant's principle that
loading details over a portion of the boundary surface becomes unimportant at significant
distances from that portion. Since we have shown how the rod description arises naturally from
a singular perturbation procedure, it is hardly suprising that a search for a "boundary layer" or
"transition" solution leads naturally to such a statement.

Near X3=0, L the deformation depends on X3 as well as on X", and Y =EX3. Con
sequently, near X3 = 0 we amend (4) and seek a configuration written in inner variables X as

u(X) = u*(X"" EX3) +EU(X).

Then, with ui = X",8/o; as in Sections 5-7, (24) is modified slightly to become

(51)

The stress ET also depends on X3 so that (10) is replaced by

(52)

whilst the boundary condition (11) over aD x (0, E-1L) is essentially unchanged. Since i and g
are O(E), the limiting form of equations (51), (52) and (11) is then

~-O' D (0 ) • Nax - 10 x, 00, 7"/0; '" = 0 over aD x (0, (0)
J

Til =cijtl41d, 4/0; = u~"" 4i3 =d(0)8i3 +tli6(O)X/l + U~3'

Solutions to these may be written as the sum of two parts
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u= ii(Xa , 0) +u"(X),

where ii(Xm 0) is the combination (37) of St.-Yenant semi-inverse solutions appropriate to the
stretching, bending and torsion at Y = O. Then u" satisfies

rij.i =0 in D x (0, 00), r1aNa = 0 over aD x (0, 00),

and will be a first approximation to the end correction at X3 =0 if we insist that u" -+ 0, 'f''' -+ 0 as
X3 -+ 00 and we impose suitable conditions over X3 =o.

Suppose, for definiteness, that the tractions are specified over X3 =0 as Tj3 =O'j(Xa ), then we
have

Toupin[ll] in his analysis of St.-Yenant's hypothesis, analyses configurations in which u;"ri3-+0
as X3-+ 00 and shows that the associated strain energy in X3 > 1decays exponentially as 1-+ 00.

These configurations involve an arbitrary rigid body translation and rotation, which may be
used to set u" -+0 as X3 -+00. Then u"(Xa , 0) is uniquely determined, and it can be shown that the
pointwise decay of u" with X3 is exponential, with decay rate depending on CijId and related to
the lowest frequency of free vibration of a disc having shape D. The decay rate clearly is
independent of E.

Knowing u"(Xa , 0) we may compute any O(E) corrections to the rotation 8(0) and
displacement r(O) of the end. Moreover, since ,," is a stress-distribution corresponding to
vanishing tractions over aD x (0, 00), we must have

JIv riJ(Xa, 0) dA = 0,

Thus, to the approximations implied by (47H50), the stress-couple Kt = EEKi at Y =0 must
equal the moment of the tractions applied over the end.

Note addedill proof. The author has recently become aware that Rigolot [13] has developed a similarasymptotic description
for large displacements of slender rods within second-order elasticity theory. Also. in [14]. he uses matching of asymptotic
expansions to discuss end effects occurring in a small displacement theory.
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